Applications of Imaging Technologies in Diagnostic Medicine

Samuel Achilefu

Department of Radiology School of Medicine Washington University in St. Louis, MO

Overview

Imaging modalities

The evolution of diagnostic imaging

Molecular imaging

- Minimally invasive depiction, characterization, and measurement of biological processes at the cellular and molecular levels of living organisms (Hilman &Neiman, Radiol. 2002)
- In vivo characterization and measurement of biological processes at the cellular and molecular level through the use of imaging devices (Wagenaar, et al. Acad. Radiol. 2001)

Mallinckrodt Insti

Challenges

Up-regulated expression → Unique expression

- Amplification mechanisms in vivo

Challenges

Chemistry
Generic products — Disease-specific products

- Smarter molecules utilizing genomics/proteomics data

Clinical use of molecular imaging

- Driven by biological questions
 - Individualized therapy
 - Specific targeting
 - Reduced toxicity
 - Earlier measures of treatment efficacy
 - Specific measures of drug action
 - Quantitative surrogate endpoints for clinical trials
- Assess
 - Expression of molecular target
 - Functional status of molecular target
 - Specific molecular pathways relevant to molecular target

Imaging in integrated care

Imaging: A multidisciplinary task

MEDICINE 10

How do we train the next generation of Imaging Scientists?

Multi- vs inter-disciplinary research

- Multi-disciplinary: a group of researchers with differing expertise contributing to a project, and then returning to doing research in their specific expertise
- Inter-disciplinary: a group of researchers incorporating multidisciplinary insights to develop integrated knowledge base of a complex problem that transcends constituent disciplines

NIH roadmap initiatives for training an interdisciplinary workforce

- Develop interdisciplinary curriculum
- Undergraduate, graduate and postdoctoral interdisciplinary training
- Create interdisciplinary research teams
- INTEGRATION of disciplines is key

Imaging sciences pathway at WUSTL

Ph.D. in imaging sciences at WUSTL

MIR Mallinckrodt Institute of Radiology Washington University in St.Louis SCHOOL OF MEDICINE 15

Challenges of interdisciplinary training

- Lack of undergraduates with interdisciplinary training
- Teaching interdisciplinary courses to students from diverse academic backgrounds
- Encouraging interactions between faculty members of different disciplines
- Resolving administrative and educational cultural differences

Addressing Challenges

- Make undergraduate education in Imaging Sciences a priority
- Encourage inter-department and inter-school interactions
 - Jointly sponsor seminars, retreats and workshops
 - Involve faculty from different schools in teaching and curriculum development
 - Require students to have two mentors from two different disciplines (one primary and one secondary)

Where do we go from here?

- Create a foundation for interdisciplinary pathways and programs
- Break down administrative, financial and academic barriers to create a new educational paradigms
 - Resolve disparities in stipends, payment of tuition, and financial models between programs
- Create and sustain an imaging sciences community at US universities

Rewards of interdisciplinary training

- Integrate disciplines (physical and biological sciences with math and engineering)
- Develop a new generation of interdisciplinary scientists with both didactic and practical training
- Facilitate communication among scientists across disciplines
- Accelerate scientific discoveries and innovation

Innovation scales with funding

Cancer imaging grant funding

Discussion points

- To what extent should the government support interdisciplinary training?
- Do we have strong public support?
 - Breast cancer consumer advocacy community

What about academe-industry involvement?

Could Foundations champion new programs?

BME and Whitaker Foundation

- Molecular medicine era has arrived
- Patient management will be guided by molecular imaging
- Opportunities to create interdisciplinary imaging science exist
- A new breed of scientists is needed

